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I N V E S T I G A T I O N  O F  T H E  D Y N A M I C  L O A D I N G  O F  I C E  

V. E. Chizhov UDC 536.424 

The results of experiments [1, 2] show that the kinetics of phase transitions of some forms of H 2) into others play an 
important role in the formation of the complex wave patterns that arises when ice is subjected to an explosion or a shock. Thus, 

according to the data presented in [1], in the 150-200 MPa pressure range ice I begins to melt, at pressures from 200 MPa to 
500 MPa a mixture of ice I and water is formed, and at pressures from 600 MPa to 1700 MPa the final phase is ice VI (the 

experiment was carried out on a specimen of ice I at a temperature T = (263 + 2) K). If we take into account the fact that 

under thermodynamic equilibrium conditions the regions in which ice I can exist in the 240-273 K temperature range is limited 

to pressures of the order of 200 MPa, the beginning of this phase of ice up to a pressure of 500 MPa confn'ms that phase 

transitions in ice are of a nonequilibrium character. 
The general principles for describing condensed media with phase transitions, based on the laws of the thermodynamics 

of irreversible processes, on certain models of the kinetics of phase transitions are presented in [3]. An approach to describing 

two-phase media wlth a phase transition, proposed in [4], was generalized in [5] to the case of N coexisting transformable 

phases and was used to investigate the shock loading of bismuth. A review of the results of theoretical and experimental 

investigations on phase transitions for the case of shock-wave loading of materials can be found in [6, 7]. 
In this paper we carry out a theoretical investigation of the loading of ice taking the kinetics of the phase transitions 

into account. The thermal equations of state and the thermodynamic properties of ice I, III, V, and VI and water, established 
previously in [8, 9], are used to describe the rapid loading of ice and the dynamics of the phase transitions. The theoretical 

results obtained are compared with experiment. 
1. p-T-Diagram of I t20  and Model of a Multiphase Medium. To investigate the loading of ice, taking kinetic effects 

into account, we will take the temperature T and the Pressure p as the independent variables. In Fig. 1 we show a p-T phase 
diagram of H20 in the temperature range 240 <_ T _< 300 K and pressure range 0 _< p _< 103 MPa. We will denote the set 

of (p, T) points corresponding to Fig. 1 by ft. The results of a detailed study of the thermodynamic properties of ice and water 

in these pressure and temperature ranges are given in [8, 9]; the thermal equations of state of ice I, III, V and VI and liquid 

water were obtained, and their thermodynamic properties were also established. These results are used to investigate the effect 
of the kinetics on the loading of ice. 

Following [9], we will denote quantities relating to ice I, III, V, VI and water by the symbols 1, 3, 5, 6, and w 

respectively. We will denote the set of symbols by ~I,, we will denote the region i (i E ~I,), in which a thermodynamically 

stable phase exists by f~i, and we will denote the lines of phase transitions by a pair of indices written in braces: {ij}. As can 
be seen from Fig. 1, the p-T-diagram of I-I20 is extremely complex: in comparatively narrow ranges of variation of the 
temperature and pressure the set fl includes at least five phases and seven phase-transition lines. In [9] the equations p = Pij(T), 
used for an analytic description of the lines {ij}, are given in [9]. 

When investigating the dynamic loading of ice we will start from the following assumptions [3, 5, 7]: 1) the shear 
stresses which occur when ice is deformed are negligibly small, so that the pressure p is the only important characteristic stress 

tensor (the basis for this assumption, as it applies to ice, is discussed in [8, 9]), 2) the mixed 1-120 phase, which is formed when 

ice is loaded, is macroscopically uniform, but consists microscopically of small inclusions of the pure phases, and we will 

neglect possible surface effects, 3) all the inclusions of the pure phases are in local thermodynamic equilibrium, although the 

mixture as a whole may be in a nonequilibrium state, 4) the temperature and pressure are the same for all the phases making 
up the mixture, and 5) the loading is adiabatic. 
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TABLE 1 

Value of 
the 
subscript i 

1 
3 
5 
6 
I/2 

f l t(T) 

w3(T) 
pzs(T) 
wdT) 
pl~,(T: 

fis(T) 

w3(T) 

pas(T) 
ps6(T) 
pa,~(T) 

fis(T) 

pla(T) 
pas(T) 

w6(T) 
ps,~(T) 

.f{6(T) 

PI3(T) 

ps6(T) 

,6~(T) 

f,.(T) 

pt=(T) 
pa~(T) 
ps,~(T) 
p6,,,(T) 

TABLE 2 

Value of 
the 
subscript i 

1 

3 
5 
6 
I/2 

di3 

-1 

1 

1 

-1  

di5 

-1 

1 

-1 

di6 diw 

-1 -1 
- 1  1 

- 1  1 

1 

-1 

Starting from assumptions 1-4, we will introduce the specific internal energy and the specific volume of the mixture 

of phases by the formulas 

E(p,T) = ~ xi-E,(p,T); 
ir (1.1) 

V(p,T) = ~ zi~(p,T). (1.2) 

Here El( p, T) and Vi(P,T) are the specific internal energy and the specific volume of the i-th pure phase, respectively, and x i 

is the mass fraction of phase i in the mixture. The summation in ( i .  1) and (1.2) is carried out over all the subscripts i belonging 

to the set of  indices ~I,. The following obvious relations hold for xi: 

E z i = l '  O<~xi<~ 1 ( i e r  
i~.r 

When the ice is loaded, when there are phase transitions, the quantities xi(i E ~ )  vary with time. To complete the 

formulation of the model we need to specify the kinetic relations describing the rate of change of x i. 
2. Description of  the Kinetics of the Phase Transit ion in k e .  We will denote the rate of  change of x i when phase 

i changes into phase j (i, j E ~ )  by aij. Assuming the quantities aij to be non-negative for any paris of  indices, we can write 

dzi 
d-V = - ( 2 . 1 )  

JE~ 
j# i  

In each difference ~ji - c~ij in the sum (2.1) only one of the terms can be nonzero, while the second must necessarily be zero. 

Different models have been used previously to specify the quantifies oqj. In the simplest case of two-phase mixtures 

[6] it is assumed that c~12 is proportional to the difference between x 1 and its equilibrium value. It was assumed in [5] that ~ij 
are proportional to G i - Gj, where G is the Gibbs function of the corresponding phase. If  we assume that only small deviations 

from the equilibrium states occur in a phase transition, the difference G i - Gj can be expanded in powers of  p - pij(T) [3] 

( p =  pij(T) is the equation of  the line {ij} retaining only linear terms, and then ~ij are proportional to the differences p - pij(T). 

A generalization of  the relation cqj - p - Pij(T) to the case of  comparatively large deviations of the point (p, T), 
eorrespondingto the mixed phase, from the phase-equilibrium line, was proposed in [3] for a two-phase mixture. In the present 
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paper we will use th following law of variation of ~ij, which generalizes the relation proposed in [3] to the case of N coexisting 
phases: 

o~q = 

ziaq {1 - exp[dq(p - Sq(T))agjq}, 
if Xi > 0 and (p ,T)  E fl j ,  

o, ~f x~ = o or (p ,T)  r f~j. 
(2.2) 

Here Aij and Aij are constants, fij(T) are functions of the temperature, and dij = + 1. The expressions for the functions fij(T), 
and also the values of dij for all pairs of indices i, j E ~/ (i ;~ j) used in (2.2), are given in Tables 1 and 2. 

We will discuss the choice of the functions fij(T) in (2.2). If the regions 9 i and 9j in which the phase~ i and j exist in 
a thermodynamically stable state have a common boundary, we can choose the equation of the corresponding phase-transition 
line as the function fij(T). It may turn out, however, that at the point (p,T) which is in the region in which the phase j is stable, 
the mixture contains phase i, the region 9 i of which has no common boundary with 9j. For example, according to the data 
given in [1], ice I is present in a mixture of phases up to pressures of 500 MPa, which may correspond to 95 - the region 
in which ice V is stable. In such cases we will choose the following model for ice I in this paper: the rate of possible transition 
of ice I into ice V or ice VI is greater the more the pressure p exceeds the maximum possible value of the pressure for the 

given temperature T in region 9, i.e., the value of p13(T). Consequently, we will use pl3(T) as the functions f15(T) and f16(T). 
The choice of the functions fij(T) for other pairs of indices i, j E ,I, in a similar situation is shown in Table 1. 

The parameters Aij in (2.2) represent the maximum possible rate of phase transitions, while Aij are the characteristic 
values of the differences [p - fij(T) [ [3]. When choosing Aij we will take into account in this paper the extent of the zones 
[2i(i E ~)  on the p-T-diagram, and also the data given in [1] on the phase composition of the multiphase mixture formed when 
ice is loaded. 

The choice of the values of Aij was governed by the presence of a characteristic time, which in the experiments carried 
out in [1] amounted to L/D = 2.5-10 -5 see (where L is the thickness of the ice specimen (of the order of 10 -1 m) and D is 
the velocity of propagation of shockwave (about 4.103 m/sec)). It was also assumed, as in [5], that the transitions between the 
solid and liquid phases are slower processes than the transkions from one solid phase to another. The chosen values of Aij and 
2iij used in the calculations are given in the appendix. Note that, at the present time, there is no quantitative physical theory 
which enables these quantities to be calculated with the necessary accuracy for specific materials. The values of Aij and ,Sij 
given in the appendix must be regarded as parameters of the chosen model, which may be refined as the microscopic kinetic 
theory of phase transitions develop and as new experimental data are acquired. 

3. Calculation of the Dynamic Loading of lee. A calculation of the equilibrium melting of ice I, III, V, and VI was 
made in [8, 9] for quasistatic adiabatic loading along the melting curves { lw}, {3w}, {5w} and {6w} respectively. From the 
kinetic point of view the rate of such loading is so small that the phase transitions occur "instantaneously," so that, at each 
instant of time, the two-phase mixture is in a state of thermodynamic equilibrium. 

To study the effect of kinetic phase transitions on the dynamic loading of ice we will consider the following problem. 

Suppose unit mass of ice, initially at a temperature T O and pressure P0, is subjected to adiabatic dynamic loading, described 
by the relation p = p(T), where t is the time. To determine the state of the ice when t > 0 we must integrate the following 
system of equations: 

dE dV 
d-T + p 7 /  = o; (3.1) 

dxi 
d--'t- = ~ ( p '  T) (i = 1, 3, 5, 6, w), (3.2) 

E(p, T) = ~ ziEi(p, T), V(p, T) = y~ ziVi(p, T), p = p(t). 

The functions Fi(P, T) are given by relations (2.1) and (2.2). Using the thermodynamic equations 

1 /'Ol/i~ 1 (Ol,~'~ 
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t t i (p ,T)  = Ei + pl,~, (OEi~  = Vi(p~Ti - T~lTi) 
k Op )r 

(~TTi is the coefficient of isothermal compressibility, OtTi is the coefficient of volume expansion, and H i is the enthalpy of phase 
i), and transforming Eqs. (3.1) and (3.2), we arrive at the Cauchy problem of determining the functions T(t) and xi(0 which 

satisfy the following system of ordinary differential equations when t > 0: 

 ,rcoEq + 
(3.3) 

dxi 
dt -- ~ ( p '  T)  (i -- 1, 3, 5, 6, ,,,), p -- p(t), 

and also the initial conditions when t = 0: 

T = T o ,  x l = l ,  x 3 = 0 ,  x s = 0 ,  x 6 = 0 ,  z , ~ = 0 .  (3.4) 

Here we have denoted the derivatives dp/dt by p. The relation p(t) is assumed given. In the problem considered we will assume 

p(t) = p . t / t .  (0 <<, t <<, t .) .  (3.5) 

By varying the parameters p.  and t. we can investigate the effect of the amplitude and rate of loading on the phase state of  unit 

mass of ice. 

System (3.3), with initial conditions (3.4), was integrated numerically by the Runge-Kutta  method. For the functions 

Ei, Hi, ~Ti, Vi (i E xlt) we used the relations established earlier in [8, 9]. The initial temperature T O was chosen to be 263 K, 

while the pressure in (3.5) p,  = 103 MPa. The calculations were carried out for two values of the loading time (formula (3.5)): 

t, = 3.10 -6 sec and 3.10 -5  see. Moreover, to take into account the effect of the initial temperature on the rapid loading of 

ice we integrated (3.3) and (3.4) at T O = 253 K and t. = 3.10 -6  see. When solving (3.3) and (3.4) at each step in time we 

calculated the functions T(x) and xi(t ) and then, using (1.2), we calculated the values of the specific volume of the mixture V. 

This enabled us to draw p - T and p - V diagrams of the dynamic loading of ice. The results of the calculations are shown 

in Figs. I-3. 

In Fig. 1 we have plotted lines of equilibrium phase transitions {ij}, separating the regions fli (i E xI,) where the ice 

phases are thermodynamically stable. Here 1 is the trajectory of the states of the multiphase mixture corresponding to T O = 

263 K and t. = 3-10 -6  see, while 2 is the similar trajectory for T O = 263 K and t. = 3-10 -5 sec, while the dashed curve 

is for T O = 253 K and t. = 3.10 -6  sec. It can be seen that a change in the time of application of  the load or of  the initial 

temperature of the ice considerably changes the trajectory of the states of the mukiphase mixture on the p - T diagram. 

In Fig. 2 we show a p-V diagram, where the small circles, triangles, rhombuses and crosses represent the data of static 

experiments [10], bounding the regions in which two-phase mixtures of water and ice I, III, V, and VI exist in equilibrium, 

while the squares represent the results obtained in [1] on the shock loading of a specimen of ice at T O = (263 + 2) K. It can 

be seen that the data on the dynamic loading differ considerably from the results of the static experiments. The calculated curve 

1, as also in Fig. 1, corresponds to T O = 263 K and t. = 3-10 -6  see, curve 2 corresponds to T O = 263 K and t. = 3.10 -5, 

while the dashed curve corresponds to T O = 253 K and t. = 3.10-6 see. As follows from Fig. 2, the rapid loading of ice has 

an extremely nonequilibrium character, while curve 1 corresponds to the experimental data on dynamic loading. 

In Fig. 3 we show the change with time of the mass fractions of the phases of ice in a multiphase mixture for loading 

at T O =263 K and t. = 3.10 -6  see. the numbers 1, 5, and 6 and the letter w in Fig. 3 relate to xl, x5, x6, and x 7. The 
dynamics of the quantities x i are determined by the duration of  the loading t and the parameters Aij and Aij in (2.2). 

Hence, in this paper, using the thermal equations of state derived in [8, 9] and the thermodynamic functions of  ice I, 

III, V, VI and water in the 240-300 K temperature range and the 0-103 MPa pressure range we have constructed a model of 

the loading of ice, taking into account the kinetics of  the phase transitions. Numerical calculations have been carried out and 

the p-V and p-T diagrams of  state of  a multiphase mixture have been constructed for different values of  the loading time and 

for different initial temperatures. The curve on the p-V diagram fo rT  0 = 263 K and t. = 3.10 -6  see agrees with experimental 

data [10] on the shock loading of  ice. It has been established that a change in the duration of  the load or of  the initial 
temperature in this model has a considerable effect on the phase state of the mixture. 

936 



8~176 IceVI 8 0 0 -  

I / /  
Water 

0 0 I I I u 
240 26O 280 T, K 0,7 

Fig. 1 

+ 

I 
a 

u �9 I ~OO0 ~ ~ u  

0,9 I/',10 "3 m3/g 1,I 

Fig. 2 

Xl 

0,8 

0,4 

5 

It/ 

i i 
1 2 

i 

0 t , l O  e sec 

Fig. 3 

The results obtained can provide a basis for mathematical modelling of the propagation of compression waves in ice, 

taking the kinetics of phase transitions into account 
4. Appendix.  1. The numerical values of Aij, sec -1 are as follows: 

A13 = 1 �9 10 s, A15 = 3 . 1 0  r, Ale = 3-  10 r, Alto = 1 �9 105, 

A35 = 1 �9 10 r, A36 = 1 �9 107, A3to = 1 �9 105, As8 = 3 �9 10 r, 

A 5 ~ , = 2 . 1 0  s, A 6 w = 2 - 1 0 5  , A w s = 1 " 1 0 4  , A , ~ = 1 . 1 0 4  . 

2. The numerical values of Aij, MPa are as follows: 

A 1 3  = 1 �9 10 3, 

Azs = 5 . 1 0  2, 

AS~ = 5 .101,  

AlS : 1 �9 103, 

A36 = 5" 102, 

A6~ = 5" 101, 

A16 = 1 �9 103, 

A3~ = 5" 102, 

A,~5 = 1 �9 102, 

A l ~ o  = 1 �9 10 2, 

AS6 = 1 �9 10 2, 

A~6 = 1 �9 10 2. 
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